Segmentation of Somatic Cells Based on Cloud Model
نویسندگان
چکیده
Mastitis is the major cause of loss in dairy farming. Somatic cells are one of most important standards to detect this infection. This work applies to a blended segmentation method for counting them in bovine milk images. Firstly, it uses cloud model to threshold cell images; secondly, watershed is used to reconstruct distance image in order to obtain the initial segmentation result; finally, according to the real sense of region similarity of human vision, an region comprehensive similarity criterion is definedconsidering gray distance, variance and edge information, which is used tomerge the pre-segmentation regions to a final segmentation result. The experimental results have been obtained using a large set of images from different sources. A performance comparison between the manual counting and the proposed method has indicated that the later one is a promising solution to automate systems for detection of bovine mastitis via optical microscopy.
منابع مشابه
A multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images
The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...
متن کاملTarget detection Bridge Modelling using Point Cloud Segmentation Obtained from Photogrameric UAV
In recent years, great efforts have been made to generate 3D models of urban structures in photogrammetry and remote sensing. 3D reconstruction of the bridge, as one of the most important urban structures in transportation systems, has been neglected because of its geometric and structural complexity. Due to the UAV technology development in spatial data acquisition, in this study, the point cl...
متن کاملComprehensive Analysis of Dense Point Cloud Filtering Algorithm for Eliminating Non-Ground Features
Point cloud and LiDAR Filtering is removing non-ground features from digital surface model (DSM) and reaching the bare earth and DTM extraction. Various methods have been proposed by different researchers to distinguish between ground and non- ground in points cloud and LiDAR data. Most fully automated methods have a common disadvantage, and they are only effective for a particular type of surf...
متن کاملA risk model for cloud processes
Traditionally, risk assessment consists of evaluating the probability of "feared events", corresponding to known threats and attacks, as well as these events' severity, corresponding to their impact on one or more stakeholders. Assessing risks of cloud-based processes is particularly difficult due to lack of historical data on attacks, which has prevented frequency-based identification...
متن کاملAn efficient method for cloud detection based on the feature-level fusion of Landsat-8 OLI spectral bands in deep convolutional neural network
Cloud segmentation is a critical pre-processing step for any multi-spectral satellite image application. In particular, disaster-related applications e.g., flood monitoring or rapid damage mapping, which are highly time and data-critical, require methods that produce accurate cloud masks in a short time while being able to adapt to large variations in the target domain (induced by atmospheric c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016